现在,只需一个浏览器,就能跑通“大力出奇迹”的大语言模型了!
不仅如此,基于 LLM 的类 ChatGPT 也能引进来,而且还是不需要服务器支持、WebGPU 加速的那种。
例如这样:
这就是由陈天奇团队最新发布的项目 ——Web LLM。
短短数日,已经在 GitHub 上揽货 3.2K 颗星。
一切尽在浏览器,怎么搞?
首先,你需要下载 Chrome Canary,也就是谷歌浏览器的金丝雀版本:
因为这个开发者版本的 Chrome 是支持 WebGPU 的,否则就会出现如下的错误提示:
在安装完毕后,团队建议用“终端”输入如下代码启动 Chrome Canary:
/Applications/GoogleChromeCanary./Contents/MacOS/GoogleChromeCanary—enable-dawn-features=disable_robustness
不过在第一次展开对话的时候,系统还会出现一个初始化的过程。
机器学习编译是关键
接下来,我们来看一看 Web LLM 如何做到“一切尽在浏览器”的。
根据团队介绍,其核心关键技术是机器学习编译。
整体方案是站在开源生态系统这个“巨人肩膀”上完成的,包括 Hugging Face、来自 LLaMA 和 Vicuna 的模型变体,以及 wasm 和 WebGPU 等。
并且主要流程是建立在 Apache TVM Unity 之上。
团队首先在 TVM 中 bake 了一个语言模型的 IRModule,以此来减少了计算量和内存使用。
TVM 的 IRModule 中的每个函数都可以被进一步转换并生成可运行的代码,这些代码可以被普遍部署在任何最小 TVM 运行时支持的环境中。
其次,TensorIR 是生成优化程序的关键技术,通过结合专家知识和自动调度程序快速转换 TensorIR 程序,来提供高效的解决方案。
除此之外,团队还用到了如下一些技术:
启发式算法:用于优化轻量级运算符以减轻工程压力。
int4 量化技术:用来来压缩模型权重。
构建静态内存规划优化:来跨多层重用内存。
使用 Emscripten 和 TypeScript :构建一个在 TVM web 运行时可以部署生成的模块。
……
上述所有的工作流程都是基于 Python 来完成的。
但 Web LLM 团队也表示,这个项目还有一定的优化空间,例如 AI 框架如何摆脱对优化计算库的依赖,以及如何规划内存使用并更好地压缩权重等等。
团队介绍
Web LLM 背后的团队是 MLC.AI 社区。
据了解,MLC.AI 社区成立于 2022 年 6 月,并由 Apache TVM 主要发明者、机器学习领域著名的青年学者陈天奇,带领团队上线了 MLC 线上课程,系统介绍了机器学习编译的关键元素以及核心概念。
值得一提的是,该团队此前还做过 Web Stable Diffusion,链接都放在下面了,赶快去体验吧~
Web LLM 体验地址:
Web Stable Diffusion 体验地址:
参考链接:
郑重声明:此文内容为本网站转载企业宣传资讯,目的在于传播更多信息,与本站立场无关。仅供读者参考,并请自行核实相关内容。